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1. Introduction and summary

String theoretic constructions aimed at describing the theory of strong interactions, QCD,

are becoming more and more elaborate. There are now many versions of the gauge/string

correspondence where many constraints of the N = 4 Super Yang Mills are relaxed, al-

though one still has to consider the limit of large number of colors N . However the de-

scription of large N QCD-like (asymptotically free) theories proves to be a hard task.

Typically, the regime where the gauge theory is modified at energies much higher than the

dynamically generated scale, is not easily tractable on the dual, string theoretic side.

Despite these limitations, holographic models are still useful because very often they

capture physics qualitatively correct. Hence, they provide a unique window into the dy-

namics of strongly coupled gauge theories. With more luck, it might be possible to extract

quantities that are universal, i.e. do not significantly change as one interpolates between

the holographic dual and QCD. A good place to search for such universal quantities is the

phase diagram of the theory, especially if the second order phase transitions are present.

A model proposed in [1] building on [2] which involves a certain configuration of D4−
D8−D8 branes is particularly interesting because it gives rise to large N QCD with quarks

in a certain region of the parameter space. This model, also sometimes called “holographic

QCD”, has a holographic dual which reproduces some expected physics of the gauge theory.

Chiral symmetry breaking and derivation of the pion lagrangian have been described in

the original paper by Sakai and Sugimoto [1]. The model has been also investigated at

finite temperature [3, 4]. Nonzero baryon chemical potential has been considered in [5, 6]

where the phase diagram was shown to contain a line of first order phase transitions in the

µB − T plane.1

1In the first versions of [5] the solution with broken chiral symmetry contained an unphysical charge.

This has been corrected in [6] and in the most recent version of [5]. Recent work which discusses related

physics and possible additional phases includes [7 – 11]. The isospin chemical potential in the D3 − D7

system was recently discussed in [12].
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In this paper we focus our attention on the case of two flavor (Nf = 2) large N

holographic QCD with non-vanishing isospin chemical potential, whose value we denote

by µI . QCD with µI 6= 0 has been studied in the variety of models (see [13 – 16] for an

incomplete list of references.) The phase diagram enjoys rich structure, with first and

second order phase transition lines separating various phases. This therefore is a promising

setting for the search of universal quantities. Besides, theory with non-vanishing µI is

amenable to lattice simulations and does not suffer from the determinant sign problem,

which complicates obtaining lattice results for the µB 6= 0 case. Finally, non-vanishing

isospin chemical potential can be experimentally relevant.

The holographic dual of the D4−D8−D8 branes involves the warped product of four-

dimensional Minkowski space, a circle parameterized by X4 ∈ [0, 2πR4), a holographic

coordinate U > UK and a four-sphere (more details are provided below). At non-zero

temperature the phase where gluons are not confined is described by a black hole met-

ric which is thermodynamically preferred for temperatures higher than 1/2πR4. Most of

the analysis below will be restricted to this phase. We comment on the appearance of

confinement/deconfinement transition in the phase diagram in section 4.

Fundamental matter is described by Nf pairs of D8 − D8 branes with asymptotic

separation L. The low energy degrees of freedom which live on the intersections of the D8

and D8 branes with the D4 branes are four-dimensional massless left and right-handed

quarks. This brane setup thus describes large N QCD in the chiral limit (in the certain

region of the parameter space). At generic values of baryon and isospin chemical potentials,

the D8 branes exist in two phases. In the curved phase D8 and D8 branes connect and

hence chiral symmetry is broken. In the straight phase, the flavor branes are located at

constant values of X4 and fall into the horizon of the black hole. This phase of restored

chiral symmetry is preferred at larger values of T and µB.

The phase diagram of the system depends on dimensionless parameters LT and µ̃i =

µi/E0 where E0 = 4πλ/L2 sets the scale of chemical potential. (λ is the t’Hooft coupling

of five-dimensional gauge theory on the D4 branes, which becomes four-dimensional after

Kaluza-Klein reduction.) figure 1 contains the picture of the phase diagram in the limit

LT→0. (It is instructive to compare it with figure 1 in [14].) The fundamental domain can

be taken to be

−µ̃1 ≤ µ̃2 ≤ µ̃1; µ̃1 ≥ 0 (1.1)

The phases are distinguished by the values of the condensates:

σi = 〈ψiψi〉, i = 1, 2; ρ = 〈ψiγ
5τ2

ijψj〉 (1.2)

where τ3 is the Pauli matrix in the flavor space. In the upper right triangle defined by

µ̃1, µ̃2 ≥ µ̃c = 0.11 all condensates vanish. Curved blue line separates the phase with non-

zero pion condensate ρ at small µB (below the line) from the phases with σ1 6= 0, σ2 = 0

for −µ̃c ≤ µ̃2 ≤ µ̃c and σ1,2 = 0 for µ̃2 ≤ µ̃c. All these features are also present in figure 1

of ref. [14]. What is not present in our analysis is the second order phase transition of [14]
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which separates the phase with ρ 6= 0 at small µ̃I from the phase with σ1,2, ρ = 0 at larger

µ̃I . This line might be an artifact of the random matrix model used in [14].2

So far we discussed the LT→0 case. The diagram does not qualitatively change as

we increase LT (see figures 5,6), although the value of µ̃c decreases until it reaches zero

at LT ≈ 0.15 (figure 4). This corresponds to the temperature of chiral phase transition

at µB = 0. The full phase diagram should be drawn in three dimensions, with figures

1,2,5,6 representing slices at two different values of LT . The surface of the first order

phase transitions which is represented by the blue curves on the pictures of these slices

looks in fact somewhat similar to a hyperboloid, with µI axis being the axis of rotation.

(Of course, there is no rotational symmetry in the µB − T plane in our case)

The rest of the paper is organized as follows. In the next section we set up the notation,

and discuss general expectations. We then consider LT→0 case, establish the necessary

holographic dictionary and present some analytic and numerical results. In section 3 we

consider finite temperature case, where most of the analysis is numerical. Here we sketch

the form of the three-dimensional phase diagram. We conclude in section 4.

2. Nonzero chemical potentials — Small temperature

We consider SU(N) gauge theory with Nf = 2 massless quarks (each described by a single

Dirac spinor ψi, i = 1, 2) in the large N limit. Various phases of the theory can be

distinguished by the values of the condensates (1.2). The matter part of the Lagrangian is

Lq =
∑

i=1,2

ψi[γ
µ(∂µ + iAµ) + µiγ

0]ψi (2.1)

where sum over color indexes of SU(N) is implied. Baryon and isospin chemical potential

are defined to be

µB =
1

2
(µ1 + µ2); µI =

1

2
(µ1 − µ2) (2.2)

respectively. At µ1,2 = 0 the Lagrangian has SU(2)×SU(2) global symmetry. One can use

the axial part of this symmetry to rotate the σ1,2 condensates into ρ; these condensates

develop nonzero expectation values, and spontaneously break chiral symmetry. The cor-

responding Nambu-Goldstone model is the pion. At non-zero value of µI (and sufficiently

small µ1,2) the system is supposed to prefer nonzero value for ρ together with σ1,2 = 0.

(see e.g. [14].)

This large N QCD has a holographic dual, which is obtained by going to the near-

horizon geometry of the D4 branes on a circle of radius R4 [2] and adding Nf = 2 D8−D8

pairs [1]. The model deviates from QCD at energy scales ∼ 1/R4 which is related to the

dynamically generated scale as

ΛQCD ∼ 1

R4

e
− 1

λ4 (2.3)

where λ4 = λ/R4 is the four-dimensional t’Hooft coupling at the cutoff scale. As custom-

ary in the holographic models, when the scales are widely separated, λ4 is small, which

2In the view of our motivation, the absence of the second order phase transition is a slight disappointment.
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corresponds to the strong curvature regime in string theory. This is beyond the reach of

the present string-theoretic technology. We consider instead the opposite regime of large

λ4 where string theory reduces to supergravity + low energy D8-brane dynamics.

In this section we restrict to the regime of small temperatures, LT→0. We assume

that confinement energy scale is much smaller than the scale associated with the dynamics

of fundamental matter (1/R4 ≪ 1/L), and even at these small temperature glue is decon-

fined.3 (It is not hard to reinstate the effects of confinement/deconfinement transition on

the phase diagram - we do it in section 4. )

The euclidean metric of the holographic dual is given by

ds2 =

(
U

R

) 3

2

(ηµνdX
µdXν + (dX4)2) +

(
U

R

)− 3

2

[(dU)2 + U2dΩ2
4] (2.4)

There is also non-trivial dilaton

eΦ = gs

(
U

R

) 3

4

(2.5)

The length scale R is related to the parameters of the gauge theory as

R3 = πλ = πgsN (2.6)

Here and in the rest of the paper the string length ls = 1. The dynamics of the fundamental

matter is described by the DBI action of Nf = 2 D8−D8 pairs. Asymptotically (as U→∞)

the branes and antibranes are separated by coordinate distance L in the X4 direction.

They may connect at smaller values of U . This configuration spontaneously breaks chiral

symmetry. Gauge fields on the D8 branes are holographically dual to the currents of global

SU(2) × SU(2) symmetry. As in [6] it is convenient to go to the gauge AU = 0 and Wick

rotate A0→iA0. Then, the non-zero chemical potential in the lagrangian (2.1) corresponds

to non-trivial boundary conditions on the values of A0:

A0i(U→∞) = µi; i = 1, 2 (2.7)

where A0i is the abelian part of the field on the i-th brane and antibrane.

In the absence of external charges, baryon chemical potential cannot affect the curved

solution [6]. Hence, for the purpose of computing the action, we can set µ1 = −µ2 = µI

in this phase. There are now two possible curved brane solutions. One solution involves

the brane with A0(U→∞) = ±µ connecting with the antibrane with A0(U→∞) = ±µ.

This solution has zero electric field on the resulting curved flavor branes and non-zero

condensates σ1 = σ2. As explained in [17] the holographic dual of the chiral condensate

involves a non-trivial profile of the open string tachyon and hence is difficult to analyze in

the DBI approximation.

Another solution involves brane with A0(U→∞) = ±µ connecting with the antibrane

with A0(U→∞) = ∓µ. There is nonzero electric field of opposite direction, but same

magnitude on two curved branes so the branes overlap again. This solution is obtained

from the previous one by chiral rotation, and hence corresponds to nonzero value of ρ.

3Formally, this limit is equivalent to the NJL limit studied in [17 – 19]
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In the following we will use the fact that in the connected phase (∂UA01)
2 = (∂UA02)

2

and X4
1 = X4

2 where the subscript corresponds to the isospin. The DBI action, up to an

overall constant, is given by

S = 2

∫
dUU

5

2

√

1 − (∂UA0)2 +

(
U

R

)3

(∂UX4)2 (2.8)

where a factor of two in front of the action counts the number of flavors and is added for

convenience. (Since the only non-vanishing component of the gauge field is A0(U), the

Chern-Simons term vanishes.) Lagrange-Euler equation of motion for the gauge field on

the branes implies the existence of the conserved quantity,

U
5

2 (∂UA0)√
1 − (∂UA0)2 +

(
U
R

)3
(∂UX4)2

= c (2.9)

eq. (2.9) can also be written as

(∂UA0)
2 = c2

1 +
(

U
R

)3
(∂UX

4)2

U5 + c2
(2.10)

Likewise, the equation of motion for X4 can be written as

(∂UX
4)2 =

U3
0 (U5

0 + c2)R3

U6(U5 + c2) − U3
0 (U5

0 + c2)U3
(2.11)

where U0 labels the turning point: it is the value of the U coordinate where ∂UX
4→∞.

To obtain (2.11) we expressed (∂UX
4) in terms of the constants of the equations of motion

and then demanded ∂UX
4→∞ at U = U0. Substituting (2.11) back into (2.10) gives

(∂UA0)
2 =

c2U3

U3(U5 + U5
0 c̃

2) − U8
0 (1 + c̃2)

(2.12)

where we introduced c̃ via c2 = U5
0 c̃

2. Let us consider the phase with ∂UA1 = −∂UA2. We

need to re-express the values of the integrals of motion through µ1,2 and L. Starting with

the former, we have
1

2
|µ1 − µ2| =

∫ ∞

U0

dU |∂UA0| = U0F (c̃) (2.13)

where we used (2.12) in the second equality. We also pass to the rescaled quantities and

define F (c̃) as

F (c̃) =

∫ ∞

1

dx

√
x3c̃2

x3(x5 + c̃2) − (1 + c̃2)
(2.14)

Note that F (c̃) is a monotonic function which satisfies F (0) = 0 and

F (c̃) ∼ c̃+ o(c̃), c̃≪ 1 (2.15)

In the opposite regime of large c̃

F (c̃) ≈ c1c̃
2

5 , c1 =

∫ ∞

0

dx√
1 + x5

=
Γ
(

3
10

)
Γ
(

6
5

)
√
π

(2.16)
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Similarly, the separation of the branes can be computed as

L

2
=

∫ ∞

U0

dU∂UX
4 =

√
πλ

U0

G(c̃) (2.17)

where

G(c̃) =

∫ ∞

1

dx

√
1 + c̃2

x6(x5 + c̃2) − x3(1 + c̃2)
(2.18)

which is a monotonically increasing function with

G(0) =
2
√
πΓ
(

9
16

)

Γ
(

1
16

) , lim
ec→∞

G(c̃) =
2
√
π Γ

(
2
3

)

Γ
(

1
6

) (2.19)

We can use (2.17) to re-express

U0 = E0G
2(c̃), E0 =

4πλ

L2
(2.20)

and then substitute the result into eq. (2.13)

1

2
|µ̃1 − µ̃2| = F (c̃)G2(c̃) (2.21)

where µ̃ ≡ µ/E0. Eq. (2.21) determines the value of c̃ in terms of µ̃. Next we need to

compute the action. To regularize, we subtract the value of the action from that of a pair

of straight branes (∂UX
4 = 0) with vanishing chemical potential.4 The resulting quantity

is

δS = 2



∫ U0

0

dUU
5

2 +

∫ ∞

U0


U 5

2 − U
5

2

√

1 − (∂UA0)2 +

(
U

R

)3

(∂Ux4)2




 (2.22)

With the help of (2.20) this can also be written as

δS = 2E
7

2

0 G
7(c̃)H(c̃) (2.23)

where

H(c̃) =
2

7
+

∫ ∞

1

x
5

2

(
1 −

√
x8

x3(x5 + c̃2) − (1 + c̃2)

)
(2.24)

This should be compared with the action for the phase where the branes are curved

but have zero electric field. (This is the phase with σ1,2 6= 0, ρ = 0.)

δS0 = 2E
7

2

0 G
7(0)H(0) (2.25)

The thermodynamically preferred phase has a larger value of δS. One can check

that (2.23) is larger or equal to (2.25), and hence as soon as µI 6= 0 the phase with ρ 6= 0

4Another popular regularization scheme involves introducing an ultraviolet (large U) cutoff for the

integral. Since we are interested in the difference between the actions for different configurations, these

regularizations are equivalent.
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Figure 1: Phase diagram for LT→0. µ1,2 are horizontal and vertical axes. Green lines µ̃2 = ±µ̃1

are boundaries of the fundamental domain. Solid blue and red curves are the lines of first order

phase transitions. The phase between the red lines has σ2 6= 0. The phase between the blue and

the green lines has ρ 6= 0. All other condensates vanish.

20 40 60 80 100 120
Μ�1

-120

-100

-80
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-40

-20

Μ�2

Figure 2: Phase diagram for LT→0. µ1,2 are horizontal and vertical axes. Green line µ̃2 = −µ̃1

is a boundary of the fundamental domain. Blue curve is the line of first order phase transitions

between the phase with ρ 6= 0 (below) and ρ = 0 (above). The leading asymptotics is µ2 ≈ −µ1.

is thermodynamically preferred. An interesting limit of (2.24) is c̃→∞, which corresponds

to the large values of µ̃I ,

H(c̃) ≈ 2c1
7

c̃
7

5 (2.26)

which corresponds to

δS ≈ 2E
7

2

0

7c
5

2

1

|µ̃1 − µ̃2|
7

2

2
5

2

(2.27)

Another possible configuration is the one with partially or completely restored chiral

symmetry. Consider the phase where σ1 = 0, σ2 6= 0. For this configuration we need to

use (2.10) with ∂UX
4 = 0 which corresponds to the limit U0→0, c̃→∞. Hence, we can use
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some of the results above in the limit c̃→∞. The value of chemical potential is now

µ1 = c1c
2

5 (2.28)

which should be compared with (2.13) and (2.16). The value of δS is

δS1r = E
7

2

0


G7(0)H(0) +

2

7c
5

2

1

µ̃
7

2


 (2.29)

Analogously, the value of the action for the phase with completely restored chiral

symmetry is

δS12r = E
7

2

0

2

7c
5

2

1

(µ̃
7

2

1 + µ̃
7

2

2 ) (2.30)

Comparing (2.29), (2.30) and (2.27) we deduce the asymptotic behavior of the line of the

phase transitions between the phase with ρ 6= 0 and the phase with ρ = 0. This line (shown

as a blue curve in figures 1,2) must behave asymptotically as µ̃2 ≈ −µ̃1 at large values of

µ̃i.

More refined features of the phase diagram need numerical work. The results are sum-

marized in figures 1,2. The green lines, µ̃2 = ±µ̃1 define the boundaries of the fundamental

domain. For µ̃1,2 > µ̃c the phase with straight branes dominates and all condensates van-

ish. Note that µ̃c is the value of µ̃B at the point of the phase transition in the µ̃I = 0

plane. It is computed numerically to be µ̃c = 0.11 at LT→0. For −µ̃c ≤ µ̃2 ≤ µ̃c but µ̃1

to the right of the blue line, the phase with straight brane “1” but curved brane “2” (with

vanishing electric field) dominates. This is the phase with σ1 = 0, σ2 6= 0. Below the blue

line is the habitat of the curved solution with ρ 6= 0, σ1 = σ2 = 0. Finally, all condensates

vanish between the blue and the red lines, for sufficiently large values of µ̃B and µ̃I .

Figure 2 depicts the phase diagram at a larger scale. As explained above, the blue

phase transition line has the leading asymptotics µ̃2 ≈ −µ̃1. The correction seems to

behave like
√
µ̃1.

3. Intermediate temperatures

In this section we consider the case of finite LT . As we will see, for sufficiently large

values of LT the phases with nonzero condensates do not exist. We also assume that the

temperature is sufficiently high, so that gluons are deconfined. This means that the black

hole has formed in the holographic dual. The metric is now

ds2 =

(
U

R

) 3

2

(f(U)dt2 + δijdX
idXj + (dX4)2) +

(
U

R

)− 3

2

[
(dU)2

f(U)
+ U2dΩ2

4

]
(3.1)

where

f(U) = 1 − U3
T

U3
, UT =

(4π)2πλT 2

9
(3.2)

The dilaton is given by (2.5). The analysis of the previous section corresponds to the

UT = 0 limit. To determine the phase diagram in the µ1 − µ2 plane at finite temperature

we need to repeat the analysis of section 2.

– 8 –
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Figure 3: t̃ = y
1

2G(c̃, y) [see eq. (3.8)] as a function of y at c̃ = 0 [red line] and c̃ = 1 × 106 [blue

line]. There is a limiting temperature beyond which the phase with connected branes does not

exists.

The DBI action now reads

S = 2

∫
dUU

5

2

√

1 − (∂UA0)2 + f(U)

(
U

R

)3

(∂UX4)2 (3.3)

The analogs of (2.11) and (2.12) are

(∂UX
4)2 =

U3
0 (U5

0 + c2)R3f(U0)

U6(U5 + c2)f2(U) − U3
0 (U5

0 + c2)U3f(U0)f(U)
(3.4)

and

(∂UA0)
2 =

c2U3f(U)

U3(U5 + U5
0 c̃

2)f(U) − U8
0 (1 + c̃2)f(U0)

(3.5)

where we again used c2 = U5
0 c̃

2. It will be convenient to introduce dimensionless variables

by rescaling

U0 = u0E0; µi = µ̃iE0 (3.6)

where E0 = 4πλ/L2 as before.

Another useful quantity is

t̃ =
2πLT

3
(3.7)

Using equations of motion to compute L together with (3.6), and going to the rescaled

variables, we obtain the following relation:

t̃ = y
1

2G(c̃, y) (3.8)

where

y =

(
UT

U0

)3

=
t̃2

u0

(3.9)

where we used (3.2), (3.6) and (3.7), and

G(c̃, y) =

∫ ∞

1

dx

√
(1 + c̃2)(1 − y2)

(x5 + c̃2)(x3 − y3)2 − (1 + c̃2)(x3 − y3)(1 − y3)
(3.10)
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Figure 4: Phase transition line at µI = 0. Horizontal axis is µ̃c. Vertical axis is t̃.
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Figure 5: Phase diagram for t̃ = 0.2. µ1,2 are horizontal and vertical axes. Green lines µ̃2 = ±µ̃1

are boundaries of the fundamental domain. Solid blue and red curves are the lines of first order

phase transitions. The phase between the red lines has σ2 6= 0. The phase between the blue and

the green lines has ρ 6= 0. All other condensates vanish.

At a given value of t̃ (or, equivalently, LT ) (3.8) determines y (and u0) as a function of

c̃. The behavior of the right hand side of (3.8) is shown in figure 3. There are two solutions

of eq. (3.8). The one with larger y comes closer to the black hole horizon than its smaller y

counterpart. It is the latter one which connects to the vacuum solution at T = 0 and it is

not hard to check that it is thermodynamically preferred. In the following we will focus on

this solution. Note that for any value of µI there is a limiting temperature beyond which

the curved brane solution does not exists.

The next step is to compute µ̃I

1

2
|µ̃1 − µ̃2| =

t̃2

y
F (c̃, y) (3.11)

where

F (c̃, y) =

∫ ∞

1

dx

√
c̃2(x3 − y3)

(x5 + c̃2)(x3 − y3) − (1 + c̃2)(1 − y3)
(3.12)
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Figure 6: Phase diagram for t̃ = 0.2. µ1,2 are horizontal and vertical axes. Green line µ̃2 = −µ̃1

is a boundary of the fundamental domain. Blue curve is the line of first order phase transitions

between the phase with ρ 6= 0 (below) and ρ = 0 (above). The leading asymptotics is µ2 ≈ −µ1.
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Figure 7: Line of phase transition [shown in blue; bottom line] in the µB = 0 plane. Horizontal

axis is 2µ̃I ; vertical axis is t̃. Red [top] line is the limiting value of t̃.

Using (3.8) and (3.11) one can determine c̃ and y in terms of µ̃1,2. To determine the

thermodynamically preferred state we need to compute the action in various phases. This

is again done in a similar way as in the previous section. The expression for δS with

non-vanishing ρ is (compare with (2.22))

δS = 2

[∫ U0

UT

dUU
5

2 +

∫ ∞

U0

dUU
5

2

(
1−
√

U8f(U)

U3(U5+c2)f(U)−U3
0 (U5

0 + c2)f(U0)

)]
(3.13)

In terms of rescaled variables, this becomes

δS = 2E
7

2

0

t̃7

y
7

2

H(c̃, y) (3.14)

where

H(c̃, y) =
2

7
(1 − y

7

2 ) +

∫ ∞

1

dxx
5

2

(
1 −

√
x5(x3 − y3)

(x5 + c̃2)(x3 − y3) − (1 + c̃2)(1 − y3)

)
(3.15)
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Note that the functions G(c̃, y), F (c̃, y),H(c̃, y) defined in (3.10), (3.12) and (3.15)

respectively, reduce to the functions G(c̃), F (c̃),H(c̃), which were used in the previous

section, in the limit y→0.

The value of δS in the phase with curved branes and zero electric field (σ1 = σ2 6=
0, ρ = 0) is

δS0 = 2E
7

2

0

t̃7

y
7

2

H(0, y) (3.16)

where y is determined from (3.8) with c̃ = 0. To analyze the phase diagram we also need

to compute the value of the action in the phases with σi = 0, σj 6=i 6= 0 and σ1,2 = 0. The

former is given by

δSir =
δS0

2
+

∫ ∞

UT

dUU
5

2

(
1 −

√
U5

U5 + c2

)
(3.17)

where c is related to µi as

µi =

∫ ∞

UT

dU

√
c2

c2 + U5
(3.18)

In terms of the rescaled quantities,

δSir =
δS0

2
+

2

7
E

7

2

0 t̃
7

(√
1 +

c2

10
− 1 + c̃

7

5

Γ
(

3
10

)
Γ
(

6
5

)
√

5
− c̃

5
2F1

(
1

5
;
1

2
;
6

5
;− t̃

10

c̃2

))
(3.19)

where c̃ is determined through

µ̃i = c̃
2

5

∫ ∞

et2

ec

2
5

dx

√
1

x5 + 1
(3.20)

Finally, the value of the δS for the phase with vanishing condensates is

δS12r = δS1r + δS2r − 2δS0 (3.21)

We are ready to analyze the phase diagram. As explained at the end of section 2, µ̃c(T )

defines the line of phase transitions in the µ̃B, T plane at µ̃I = 0. Here we reproduce this

plot for completeness in figure 4.

Figures 5,6 contain the slice of the phase diagram in the µ̃1−µ̃2 plane for a sample value

of t̃ = 0.2. The pictures look similar to the ones in figures 1,2. The only visible difference

is shrinking of the µ̃c with temperature, described by the curve in figure 4. Therefore

the picture which emerges at large µ̃I is the surface of first order phase transitions in the

µ̃B , µ̃I , T space whose sections are the blue lines in figures 2, 6. This surface resembles

hyperboloid with µ̃I being the axis of rotation. To determine the behavior of the surface

at large µ̃I , we consider µ̃B = 0 plane.

In figure 7 we plot the curve which is obtained by intersecting the phase transition

surface with the µ̃B = 0 plane. Red line on this graph denotes the limiting value of t̃,

beyond which the curved brane solution does not exist. Both lines seem to go to limiting

values of t̃ at large µI . From this picture we see that the phase transition surface never

intersects the limiting surface, and the transition remains first order.
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4. Conclusions

In this paper we analyzed the phase diagram of holographic QCD at finite temperature

and baryon and isospin chemical potentials, defined by (2.2). The action (2.1) is invariant

under µ1 ↔ µ2, which corresponds to µI → −µI . Moreover, the physics is also invariant

under µi→ − µi. Hence, the fundamental domain in the µ1, µ2 plane can be taken to

be (1.1). We found an intricate structure with various phases separated by the first order

phase transitions.5

In particular, at large values of µI , we found a surface of first order phase transitions

which separates the phase with the nonzero value of ρ existing at smaller values of µB from

the chirally restored phase at larger values of µB .

It is not hard to reinstate gluon confinement/deconfinement transition in the phase

diagram. It is represented as a surface T = 1/2πR4. For temperatures lower than this

value chiral symmetry is necessarily broken and the system is in the phase with nonzero

electric flux on the branes. We do not analyze this phase in detail here. It is clear that in

the regions of the phase space where chiral symmetry is broken, the surface T = 1/2πR4

describes the coincident confinement/deconfinement and chiral phase transitions.

An important observation concerns the energy scales in the problem. We have seen

that the relevant variables in the phase space are LT and µ/E0. This is consistent with the

energy scales of the mesons being O(1/L) and constituent masses of quarks being O(E0).

The DBI action used to analyze the structure of the phase diagram in this paper is

essentially abelian. It would be interesting to investigate the effect of non-abelian degrees of

freedom, in particular with regards to the stability of the solutions. The existence of other

phases also cannot be ruled out. Other directions for future research include generalizing

our results to a higher number of flavors and studying other holographic models of QCD-like

theories.
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